【Python实战因果推断】20_线性回归的不合理效果10

news/2024/7/8 2:25:58 标签: 线性回归, 算法, 回归

目录

Neutral Controls

Noise Inducing Control

Feature Selection: A Bias-Variance Trade-Off


Neutral Controls

现在,您可能已经对回归如何调整混杂变量有了一定的了解。如果您想知道干预 T 对 Y 的影响,同时调整混杂变量 X,您所要做的就是在模型中加入 X。或者,为了得到完全相同的结果,您可以根据 X 预测 T,得到残差,并将其作为干预的去势版本。在 X 固定不变的情况下,将 Y 与这些残差进行回归,就能得到 T 与 Y 的关系。

但 X 中应包含哪些变量呢?同样,并不是因为增加变量就能调整变量,所以你想在回归模型中包含所有变量。你不想包含共同效应(对撞机)或中介变量,因为这些变量会引起选择偏差。但在回归中,您还应该了解更多类型的控制因素。这些控制项乍看起来似乎无害,但实际上却相当有害。这些控制被称为中性控制,因为它们不会影响回归估计的偏差。但它们会对方差产生严重影响。正如您所看到的,在回归中包含某些变量时,需要权衡偏差和方差。例如,请考虑下面的 DAG:

您是否应该在模型中加入 credit_score2?如果不包括它,就会得到一直以来看到的相同结果。这个结果是无偏的,因为您是根据信用评分 1_buckets 进行调整的。但是,尽管您不需要这样做,请看看如果您将 credit_score2 计算在内会发生什么。将下面的结果与您之前得到的不包含 credit_score2 的结果进行比较。有什么变化?

 formula = "default~credit_limit+C(credit_score1_buckets)+credit_score2"
 model = smf.ols(formula, data=risk_data_rnd).fit()
 model.summary().tables[1]

首先,关于信贷限额的参数估计值变高了一些。但更重要的是,标准误差减小了。这是因为 credit_score2 对结果 Y 有很好的预测作用,它将有助于回归>线性回归的去噪步骤。在 FWL 的最后一步,由于包含了 credit_score2,Y 的方差将减小,对 T 进行回归将得到更精确的结果。

这是回归>线性回归的一个非常有趣的特性。它表明,回归>线性回归不仅可以用来调整混杂因素,还可以用来减少噪音。例如,如果您的数据来自适当随机化的 A/B 测试,您就不需要担心偏差问题。但您仍然可以使用回归作为降噪工具。只需包含对结果有高度预测性的变量(并且不会引起选择偏差)即可。

Noise Inducing Control

就像控制可以减少噪音一样,它们也可以增加噪音。例如,再次考虑条件随机实验的情况。但这次,您感兴趣的是信用额度对消费的影响,而不是对风险的影响。和上一个例子一样,信用额度是随机分配的,给定的是 credit_score1。但这次,我们假设credit_score1 不是混杂因素。它是干预的原因,但不是结果的原因。这个数据生成过程的因果图如下所示:

这意味着您不需要对credit_score1 进行调整,就能得到信用额度对消费的因果效应。单变量回归模型就可以了。在这里,我保留了平方根函数,以考虑干预反应函数的凹性:

 spend_data_rnd = pd.read_csv("data/spend_data_rnd.csv")
 model = smf.ols("spend ~ np.sqrt(credit_limit)",
 data=spend_data_rnd).fit()
 model.summary().tables[1]

 但是,如果你确实包括了credit_score1_buckets,会发生什么呢?

 model = smf.ols("spend~np.sqrt(credit_limit)+C(credit_score1_buckets)",
 data=spend_data_rnd).fit()
 model.summary().tables[1]

您可以看到,它增加了标准误差,扩大了因果参数的置信区间。这是因为,OLS 喜欢干预方差大的情况。但是如果控制了一个可以解释干预的协变量,就会有效地降低干预的方差。

Feature Selection: A Bias-Variance Trade-Off

在现实中,很难出现协变量导致干预而不导致结果的情况。最有可能出现的情况是,有很多混杂因素同时导致 T 和 Y,只是程度不同而已。在图  中,X1 是 T 的强致因,但 Y 的弱致因;X3 是 Y 的强致因,但 T 的弱致因;X2 处于中间位置,如每个箭头的粗细所示。

在这种情况下,您很快就会陷入进退两难的境地。一方面,如果您想摆脱所有偏差,就必须包括所有协变量;毕竟,它们是需要调整的混杂因素。另一方面,对干预原因进行调整会增加你的估计器的方差。

为了了解这一点,让我们根据图  中的因果图来模拟数据。这里,真实的 ATE 是 0.5。如果您试图在控制所有混杂因素的情况下估计这一效应,估计值的标准误差会过高,无法得出任何结论。

 np.random.seed(123)
 n = 100
 (x1, x2, x3) = (np.random.normal(0, 1, n) for _ in range(3))
 t = np.random.normal(10*x1 + 5*x2 + x3)
 # ate = 0.05
 y = np.random.normal(0.05*t + x1 + 5*x2 + 10*x3, 5)
 df = pd.DataFrame(dict(y=y, t=t, x1=x1, x2=x2, x3=x3))
 smf.ols("y~t+x1+x2+x3", data=df).fit().summary().tables[1]

 如果您知道其中一个混杂因素对干预的预测作用很强,而对结果的预测作用很弱,您可以选择将其从模型中剔除。在本例中,这就是 X1。现在,请注意!这将使您的估计出现偏差。但是,如果这也能显著降低方差,也许这就是值得付出的代价:

 smf.ols("y~t+x2+x3", data=df).fit().summary().tables[1]

底线是,在模型中包含(调整)的混杂因素越多,因果关系估计值的偏差就越小。但是,如果您包含的变量对干预结果的预测作用较弱,但对治疗的预测作用较强,那么这种偏差的减少将以方差的增加为代价。同理可证,有时为了减少方差而接受一点偏差是值得的。此外,您应该非常清楚,并非所有的混杂因素都是相同的。当然,因为 T 和 Y 的关系,所有的混杂因素都是常见的。但如果它们对治疗的解释太多,而对干预结果的解释几乎没有,那么你真的应该考虑将其从调整中剔除。这适用于回归,但也适用于其他调整策略,如倾向得分加权

遗憾的是,混杂因素对干预的解释能力应该有多弱,才能证明剔除它是合理的,这在因果推理中仍是一个未决问题。不过,这种偏差与方差的权衡还是值得了解的,因为它有助于您理解和解释回归>线性回归的情况。


http://www.niftyadmin.cn/n/5536163.html

相关文章

Shenandoah GC概述

文章目录 1_介绍2_原理1.0版本2.0版本3_ShenandoahGC的执行流程4_并发转移阶段 – 并发问题 1_介绍 Shenandoah 是由Red Hat开发的一款低延迟的垃圾收集器,Shenandoah 并发执行大部分 GC 工作,包括并发的整理,堆大小对STW的时间基本没有影响…

vs2019 无法打开项目文件

vs2019 无法打开项目文件,无法找到 .NET SDK。请检查确保已安装此项且 global.json 中指定的版本(如有)与所安装的版本相匹配 原因:缺少组件 解决方案:选择需要的组件进行安装完成

在TkinterGUI界面显示WIFI网络摄像头(ESP32s3)视频画面

本实验结合了之前写过的两篇文章Python调用摄像头,实时显示视频在Tkinter界面以及ESP32 S3搭载OV2640摄像头释放热点(AP)工作模式–Arduino程序,当然如果手头有其他可以获得网络摄像头的URL即用于访问摄像头视频流的网络地址&…

常用的Linux系统命令

常用的Linux系统命令 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们来探讨一些常用的Linux系统命令,这些命令对于系统管理员、开发人员和普…

Android-卷积神经网络(Convolutional Neural Network, CNN)

一个复杂且在Android开发中常见的算法是图像处理中的卷积神经网络(Convolutional Neural Network, CNN)。CNN被广泛用于图像识别、物体检测和图像分割等任务,其复杂性在于需要处理大量的图像数据、复杂的神经网络结构和高效的计算。 1. 卷积操作(Convolution) 数学原理:…

高考志愿填报,选热门专业还是选自己喜欢的专业

对于每一个结束高考的学生来说,都要面临选专业这个严峻的挑战。选专业可以说是妥妥的大工程,因为这关系到接下来的几年要学什么内容,关键是未来的几十年要从事什么样的工作。 所以在谈及选专业这个问题的时候,每个人的内心都有些…

2.5 C#视觉程序开发实例1----设计一个IO_Manager

2.5 C#视觉程序开发实例1----设计一个IO_Manager 第一步目标: 1 实现获取IO触发信号Trig0 2 能够实现程序切换 3 图像处理后能够输出一个脉冲 1 IO 引脚定义 1.1 输入信号定义 1.2 输出信号定义 2 IO时序图 2.1 触发时序 2.2 切换程序时序图 3 IO_Manager.cs …

如何保障云计算健康发展

随着云计算技术的日益成熟,云原生技术凭借其“生于云、长于云”的核心理念,已然成为未来十年云计算发展的关键驱动力。这项技术不仅有效应对了传统云实践中应用升级滞后、架构繁重、迭代效率低下等挑战,更为业务创新铺设了坚实的基石。云原生…