【CSAPP】-linklab实验

news/2024/7/8 2:02:01 标签: csapp

目录

实验目的与要求

实验原理与内容

实验步骤

实验设备与软件环境

实验过程与结果(可贴图)

实验总结


实验目的与要求


1.了解链接的基本概念和链接过程所要完成的任务。
2.理解ELF目标代码和目标代码文件的基本概念和基本构成
3.了解ELF可重定位目标文件和可执行目标文件的差别。
4.理解符号表中包含的全局符号、外部符号和本地符号的定义。
5.理解符号解析的目的和功能以及进行符号解析的过程。


实验原理与内容


每个实验阶段(共5个)考察ELF文件组成与程序链接过程的不同方面知识
阶段1:全局变量数据节
阶段2:强符号与弱符号数据节
阶段3:代码节修改
阶段4:代码与重定位位置
阶段5:代码与重定位类型

在实验中的每一阶段n(n=1,2,3,4,5…),按照阶段的目标要求修改相应可重定位二进制目标模块phase[n].o后,使用如下命令生成可执行程序linkbomb:
$ gcc -o linkbomb main.o phase[n].o [其他附加模块——见具体阶段说明]
正确性验证:如下运行可执行程序linkbomb,应输出符合各阶段期望的字符串:
$ ./linkbomb
$ 19210320303        [仅供示例,具体目标字符为每位学生学号]
实验结果:将修改后正确完成相应功能的各阶段模块(phase1.o, phase2.o, …)提交供评分。


实验步骤


1. 实验数据
学生实验数据包: linklab学号.tar
数据包中包含下面文件:
main.o:主程序的二进制可重定位目标模块(实验中无需修改)
phase1.o, phase2.o, phase3.o, phase4.o, phase5.o:各阶段实验所针对的二进制可重定位目标模块,需在相应实验阶段中予以修改。
解压命令:tar xvf linklab学号.tar
2. 实验工具
readelf:读取ELF格式的各.o二进制模块文件中的各类信息,如节(节名、偏移量及其中数据等)、符号表、字符串表、重定位记录等
objdump:反汇编代码节中指令并提供上述部分类似功能
hexedit:编辑二进制文件内容


实验阶段1
要求:修改二进制可重定位目标文件“phase1.o”的数据节内容,使其与main.o链接后能够运行输出(且仅输出)自己的学号:

$ gcc -o linkbomb main.o phase1.o -no-pie

$ ./linkbomb

学号

实验提示:
检查反汇编代码,获得printf(根据情况有可能被编译时转换为puts)输出函数的参数的(数据节中)地址 。
使用hexedit工具(或自己编写实现二进制ELF文件编辑程序),对phase1.o数据节中相应字节进行修改。

实验阶段2
要求:根据强符号与弱符号的原则,判断符号表中的符号以及其所对应的数据区域。利用符号解析规则,创建生成一个名为“phase2_patch.o”的二进制可重定位目标文件(可以不修改phase2.o模块),使其与main.o、phase2.o链接后能够运行和输出(且仅输出)自己的学号:

$ gcc -o linkbomb main.o phase2.o phase2_patch.o  -no-pie

$ ./linkbomb

学号

实验提示:
Phase2.o模块的符号表中,包含了类型为COM的符号。此类符号的特点是:未被赋初值。所以,其在ELF的数据节中并不真实存在。所以需要另寻解决办法,创造出真实存在的数据并对其进行二进制编辑,以达到输出自己学号的目的。
解题需要运用的主要知识为强弱符号的解析规则。另外,层序中包含了一个数值转换过程,学生需要根据反汇编代码确定其修改规则,并根据修改规则进行“反制”。

实验阶段3
要求:修改二进制可重定位目标文件“phase3.o”的代码节内容,使其与main.o链接后能够运行输出(且仅输出)自己的学号:

$ gcc -o linkbomb main.o phase3.o -no-pie

$ ./linkbomb

学号


实验提示:
检查反汇编代码,定位模块中的各组成函数并推断其功能作用。 根据反汇编程序的执行逻辑,修改函数中的机器指令(用自己指令替换函数体中的nop指令)以实现期望的输出。
为了实现输出功能,自行编写获得的二进制程序(可以通过编写汇编代码然后使用gcc -c命令的方式实现)可以“借用”其他函数中的“有用代码或数据”,比如输出函数和数据引用等具体部分。

实验阶段4
要求:修改二进制可重定位目标文件“phase4.o”中重定位节和数据节中的内容,使其与main.o链接后能够运行输出(且仅输出)自己的学号:

$ gcc -o linkbomb main.o phase4.o -no-pie

$ ./linkbomb

学号


实验提示:
本阶段学生所拿到的.o文件中的“重定位位置”信息已经被抹除,学生需要根据实际情况确认冲重定位的发生位置,并根据重定位类型对位置信息进行恢复。若程序未能够正确修改重定位位置,则典型问题表现为段错误segmentation fault。此外,还需要学生根据程序所用到的数据情况进行数据部分的二进制修改。

实验阶段5
要求:修改二进制可重定位目标文件“phase5.o”中重定位节和数据节的内容,使其与main.o链接后能够正确输出(且仅输出)自己学号:

$ gcc -o linkbomb main.o phase5.o -no-pie

$ ./linkbomb

学号 

You called touch2。若不完全满足题目要求,则会提示“Misfire” 和FAIL相关字段。
阶段5:使用ROP方式对rtarget进行攻击,调用touch3,且成功输出Touch3!: You called touch3。若不完全满足题目要求,则会提示“Misfire” 和FAIL相关字段。

实验设备与软件环境


1.Linux操作系统—64位Ubuntu 18.04
2. gdb调试器和objdump反汇编指令
3. 笔记本

实验过程与结果(可贴图)

实验工具
readelf:读取ELF格式的各.o二进制模块文件中的各类信息,如节(节名、偏移量及其中数据等)、符号表、字符串表、重定位记录等
objdump:反汇编代码节中指令并提供上述部分类似功能
hexedit:编辑二进制文件内容
阶段一
使用如下命令生成可执行程序linkbomb:
$ gcc -o linkbomb main.o phase1.o -no-pie
正确性验证:如下运行可执行程序linkbomb
$ ./linkbomb
应输出符合各阶段期望的字符串:
$ 232151503xx (已修改的情况下)


先执行一遍linkbomb 保证程序不会出现乱码
这里我们还没有修改,所以不会有结果

输入readelf -a phase1.o 查看elf文件内容


其中我们完成学号字符串的输出,找到对应参数g_data,其重定向类型是绝对地址(R_X86_64_32),且+了0x18,同时也是一个OBJECT-全局变量。因此我们需要找到对应的.data节在全文中的偏移量,从而将g_data的内容修改为学号字符串,完成phase1。

(R_X86_64_32)那里是5c,加上我们data中的60就是
5c+60=bc
从而确定在0xbc处插入我们需要插入的数据-学号字符串。

Ascii码的0-9是0x30-0x39
我的学号是23215150318
也就是32 33 32 31 35 31 35 30 33 31 38
接着输入hexedit phase1.o命令来修改phase1.o,并对phase1.o数据节中相应字节进行修改

修改完记得00结尾加保存ctrl+w,ctrl+x退出编辑

00结尾才能知道修改到的值

这是一个比较大的空间
我们找到0xbc的地方
这里显示的是b4,我们就挨个去算,4567,8 9 10 11
11位就是bb,12就是bc
我们就把32 33 32 31 35 31 35 30 33 31 38放进去,再00结尾保存
退出即可。

再验证一下有没有保存到
$ gcc -o linkbomb main.o phase1.o -no-pie
$ ./linkbomb


这样就过关了。

阶段二
使用readelf查看phase2.o并查找有关输出函数的内容。
输入readelf -a phase2.o 查看elf文件内容


可以发现COM未被赋初始值,COM表示g_myCharArray是一个未初始化的弱符号数组,大小Size为256,所以我们需要创建一个已初始化强符号的g_myCharArray来覆盖弱符号。需要打补丁phase2_patch.o

从中可以看到put函数的参数是g_myCharArray,其+0x5c,重定向类型也为绝对地址。

创建phase2_patch.c文件并写入0x5c个字节的“0”以及学号ASCII码。


使用“gcc -c phase2_patch.c”编译生成phase2_patch.o文件并链接:“gcc -o linkbomb2 main.o phase2.o phase2_patch.o -no-pie”,最后运行程序

每个字符都发生了偏移。为了得到偏移量来反偏移得到字符串,实现学号的插入,为了方便计算输入的结果,我们编写一个程序来手动计算偏移量得出的结果,最终通过编辑好学号key,来计算be=%d输出计算结果,即正确的反偏移答案。
hack.c

使用“gcc -c hack.c”编译生成hack.o文件并链接
   运行:gcc hack.c -o hack
gcc -o linkbomb2 main.o phase2.o phase2_patch.o -no-pie
./linkbomb2 > out
./hack < out

最终通过编辑好学号key,来计算be=%d输出计算结果,即正确的反偏移答案。
编译计算文件并链接上linkbomb2,将结果导出为out并使用out运行计算文件,得到的be值即为学号对应的反偏移量,修改patch文件中的字符串。


得到结果文件后再次编译链接运行linkbomb2

成功输出学号,这样就算过关了。


阶段三


链接 linkbomb3 执行:gcc -o linkbomb3 main.o phase3.o -no-pie
使用 objdump -d linkbomb3 反汇编查看汇编代码:

如果想要成功打印学号,应该是打印在后,所以包含puts语句的myFunc1方法在后面,并且接收一个参数,这个参数应该是学号;而myFunc2则是获取一个地址的值给到%rax寄存器。

可以看出,就是先调用myFunc2函数获取学号赋值给%rax,然后mov %rax,%rdi设置参数在调用myFunc1

所以我们注入的命令顺序为:

    1、call myFunc2
    2、Mov %rax,%rdi
    3、Call myFunc1

使用 readelf -a phase3.o 查看 .text 节的偏移量:为0x40

使用 objdump -d phase3.o 查看 do_phase 填充代码地址

填充的起始地址是 0x40 + 0x31 = 0x71。
其中 call 指令是相对寻址,myFunc 函数的地址为

第一条指令call指令对应的机器码是e8 xx xx xx xx ,占 5 个字节,结束地址为 0x31 + 0x5 = 0x36,所以距离 myFunc2 函数地址的相对距离为 0x1b - 0x36 =-1b,也就是 e5 ff ff ff,

所以第一条 call 指令为 e8 e5 ff ff ff。

第二条指令mov %rax,%rdi,mov %rax,%rdi的机器码是为 48 89 c7

第三条指令为call指令对应的机器码是e8 xx xx xx xx ,占 5 个字节,加上第二条指令的 3 个字节,所以结束地址为 0x36 + 0x3 + 0x5 = 0x3e ,所以距离 myFunc1 函数地址的相对距离为 0x0 - 0x3e = c2 ff ff ff ,所以第三条指令为 e8 c2 ff ff ff 。

修改 phase3.o 的二进制,将构造的代码注入

然后执行 hexedit phase3.o 从 0x71 开始写入我们构造的代码


接着来查看是否修改
执行 objdump -d phase3.o查看 do_phase3 函数


可以看到修改成功


完成代码插入,现在需要完成学号赋值。回看myFunc2函数汇编,发现学号赋值处函数获取数据的内存地址,即为.data节。因此我们需要找到节头以及加数。图13中显示.data节节头为0x1a0,重新查看ELF发现.data加数是为0x5c,从而确定学号应当位于phase3.o的0x1a0+0x5c=0x1fc处,并且以“00”结尾进行插入。

 readelf -a phase3.o

执行 hexedit phase3.o 从0x1fc修改成我们的学号


gcc -o linkbomb3 main.o phase3.o -no-pie
./linkbomb3

通过查阅之前讲过的第三章的知识,也算恶补了一下。
至此,阶段三结束。

实验总结

  通过此实验,我掌握了符号解析、符号定义分类 、静态链接解析过程、符号表条目、重定位,还有的是关于地址的计算。基于ELF文件格式和程序链接过程的理解,修改给定二进制可重定位目标文件的数据内容、机器指令等部分。实验过程中,我有遇到了bug,但通过了查询资料(书都要翻烂了)、上百度搜问,最后自己独立解决了bug。通过完成此次实验,不仅收获了很多知识,而且还锻炼了我的动手能力。解决了问题,完成了实验,感觉收获满满的,也有一定的成就感。


http://www.niftyadmin.cn/n/5535870.html

相关文章

音视频流媒体视频平台LntonAIServer视频监控平台工业排污检测算法

在当今社会&#xff0c;环境保护和可持续发展已成为全球关注的焦点。工业生产作为经济发展的重要支柱&#xff0c;其对环境的影响不容忽视。因此&#xff0c;如何有效地监控和管理工业排污&#xff0c;成为了一个亟待解决的问题。LntonAIServer工业排污检测算法应运而生&#x…

Node版本管理工具 fnm 安装使用

fnm 是一个基于 Rust 开发的 Node 版本管理工具&#xff0c;它的目标是提供一个快速、简单且可靠的方式来管理 Node.js 的不同版本。同时&#xff0c;它是跨平台的&#xff0c;支持 macOS、Linux、Windows。&#x1f680; Fast and simple Node.js version manager, built in R…

超详细的 C++中的封装继承和多态的知识总结<1.封装与继承>

引言 小伙伴们都知道C面向对象难&#xff0c;可是大家都知道&#xff0c;这个才是C和C的真正区别的地方&#xff0c;也是C深受所有大厂喜爱的原因&#xff0c;它的原理更接近底层&#xff0c;它的逻辑更好&#xff0c;但是学习难度高&#xff0c;大家一定要坚持下来呀&#xff…

【面试系列】C#高频面试题

欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;欢迎订阅相关专栏&#xff1a; ⭐️ 全网最全IT互联网公司面试宝典&#xff1a;收集整理全网各大IT互联网公司技术、项目、HR面试真题. ⭐️ AIGC时代的创新与未来&#xff1a;详细讲解AIGC的概念、核心技术、…

扫描工具Metasploit的安装和使用

安装 Metasploit 你可以使用 Metasploit 的安装脚本从 Rapid7 官方站点下载安装。 更新系统包&#xff1a; sudo apt update下载并安装 Metasploit&#xff1a; curl https://raw.githubusercontent.com/rapid7/metasploit-omnibus/master/config/templates/metasploit-framew…

怎么制定“科研算力共享技术规范”,构建算力网络,

目录 怎么制定“科研算力共享技术规范”,构建算力网络 一、明确目标与需求 二、制定技术规范 三、构建算力网络 四、政策支持与生态建设 五、实施与评估 怎么制定“科研算力共享技术规范”,构建算力网络 制定“科研算力共享技术规范”并构建算力网络是一个复杂但至关重…

析构函数和拷贝构造函数

文章目录 析构函数1.析构函数的定义&#xff1a;2.析构函数的语法&#xff1a;3.析构函数的特性&#xff1a; 拷贝构造函数1.拷贝构造函数的定义&#xff1a;2.拷贝构造函数的语法3.拷贝构造函数的特性(1)拷贝构造函数是构造函数的一个重载形式**(这个其实也很好理解&#xff0…

【图像分割】mask2former:通用的图像分割模型详解

最近看到几个项目都用mask2former做图像分割&#xff0c;虽然是1年前的论文&#xff0c;但是其attention的设计还是很有借鉴意义&#xff0c;同时&#xff0c;mask2former参考了detr的query设计&#xff0c;实现了语义和实例分割任务的统一。 1.背景 1.1 detr简介 detr算是第…